

DYNAmics and STructural analYsis of 2D materials

OYNASTY

DYNASTY

IESL SEMINAR

Wednesday 15/03/2023, 12:00 FORTH Seminar Room 1

Control of the Exciton and Spin/Valley Properties in Atomically Thin Transition Metal Dichalcogenides

Dr. Xavier Marie

Université de Toulouse, INSA-CNRS-UPS, Toulouse, France e-mail: <u>marie@insa-toulouse.fr</u>

Abstract

In this talk I will first recall briefly the general properties of 2D excitons in Transition Metal Dichalcogenides (TMD) monolayers: giant binding energy, oscillator strength, exchange interactions, spin/valley locking ...¹.

Encapsulation of TMD monolayers in hexagonal boron nitride (hBN) yields narrow optical transitions approaching the homogeneous exciton linewidth^{2,3}. We have demonstrated that the exciton radiative rate in these van der Waals heterostructures can be tailored by a simple change of the hBN encapsulation layer thickness as a consequence of the Purcell effect ⁴.

We also measured the exciton fine structure by magneto-photoluminescence spectroscopy in magnetic fields up to 30 T $^{5.6}$. I will show that the bright-dark exciton splitting can be tuned by a few meV, as a result of a significant Lamb shift of the optically active exciton which arises from emission and absorption of virtual photons triggered by the vacuum fluctuations of the electromagnetic field⁷.

Finally I will present recent experimental results on spin/valley pumping of resident electrons in WSe_2 and WS_2 monolayers⁸. Using a spatially-resolved optical pump-probe experiment, we measure the lateral transport of spin/valley polarized electrons over very long distances (tens of micrometers)⁹. These results highlight the key role played by the spin-valley locking effect in TMD monolayers on the pumping efficiency and the polarized electron transport.

- ¹ G. Wang *et al*, Rev. Mod. Phys. **90**, 021001 (2018)
- ² F. Cadiz et al, Phys. Rev. X **7**, 021026 (2017)
- ³ G. Wang et al, Phys. Rev. Lett. **119**, 047401 (2017)
- ⁴H. Fang *et al*, Phys. Rev. Lett. **123**, 067401 (2019)
- ⁵ C. Robert *et al*, Phys. Rev. Lett . **126**, 067403 (2021)
- ⁶ C. Robert et al, Nature Com. **11**, 4037 (2020)
- ⁷ L. Ren et al, submitted (2023)
- ⁸ C. Robert *et al*, Nature Com. **12**, 5455 (2021)
- ⁹ C. Robert *et al*, Phys. Rev. Lett. **129**, 027402 (2022)

Nikolaou Plastira 100 Vassilika Vouton GR 700 13 Heraklion Crete, Greece Tel. +30 2810-391300-2 Fax +30 2810391305 Email: iesl@iesl.forth.gr

